Synthesis of 2,2-Dialkyl-5-hydroxyisoxasolidinium and 1,1-Dialkyl-3-hydroxypyrasolidinium Salts

Kirill N.Zelenin^{*}, Irina P.Bezhan, Igor V.Lagoda Military Medical Academy, Sankt-Petersburg, 194175, Russia

Abstract: Salts of N,N-dialkylhydroxylamines and β -dialkylhydrazides react with acrolein to give 2.2-dialkyl-5-hydroxyisoxazolidinium and 1,1-dialkyl-3-hydroxypyrazolidinium salts.

Alkenals and alkenones classically react with hydrazine (monosubstituted hydrazines) and hydroxylamine forming pyrazolines and isoxazolines respectively. Recently we used β -alkyl (aryl) hydrazides and N-substituted hydroxylamines and by this way 5-hydroxypyrazolidines ¹ and 5(3)-hydroxyisoxazolidines ² were synthesized in good yields. The use of trisubstituted hydrazines and N,N-disubstituted hydroxylamines in such a reaction have not been known yet.

We now report the reaction of salts of N,N-dialkylhydroxylamines $(\underline{1},\underline{2})$ and dimethylhydrazides $(\underline{3},\underline{4})$ with acrolein at room temperature in acetonitrile solution gives 5-hydroxyisoxazolidinium and 3-hydroxypyrazolidinium salts $(\underline{5}-\underline{8})$ in good yields (80-100%).

Examination of NMR ¹H and ¹³C spectral data for (5-8)³ indicates that the compounds exist in cyclic form A in accordance with IR spectra in nujol (absence of characteristic peaks at 1600–1800 cm⁻¹).

The structure of (7) is confirmed by its further aminonitrilic regrouping⁴ into β -dimethylaminopropionitrile (yield 12 %)⁵.

Treatment of 2-benzyl-5-hydroxyisoxazolidine⁶ with benzyl iodide gives 2,2-dibenzyl-5-hydroxyisoxazolidinium iodide (m.p. 130-131 °C, from acetonitrile) ¹H NMR spectrum of it is identical with the spectrum of the salts (6).

Dialkylhydrazides don't react with acrolein but hydroxylamine (2) gives 3-N,N-dibenzylhydroxylaminopropanal⁷.

References and Notes

- Zelenin, K.N.; Dovgilevich, A.V.; Bezhan, I.P.; Golubeva, G.A.; Sviridova, L.A.; Pastushenkov, L.V.; Gromova, E.G.; Gatchina, T.A.; Pomogaibo, S.V. Khim. Geterocycl. Soedin. 1984., 5, 659-666.
- Zelenin, K.N.; Motorina, I.A.; Sviridova, L.A.; Bezhan, I.P.; Ershov, A.Yu.; Golubeva, G.A.;
 Bundel, Yu.G. Khim. Geterocycl. Soedin. 1987., 9, 1270-1276.
- A typical procedure: to a stirred solution of 3 (2.02 g. 10 mmol) in dry CH₃CN (50 ml) acrolein (1 3 ml. 10 mmol) was added at room temperature. In a week the solution was evaporated in vacuum. The resulting crude mass was recrystallized from CH₂CN to give pure (7) (2.20 g, 85 %). New compounds were characterized by spectroscopic data and melting points (from CH₂CN) and by C. H and N elemental analysis. 5: m.p. 125-126 °C; ¹H NMR (100 MHz, CDCl₃ + DMSO-d₆): δ 8.28 (br.s., 1H, OH), 5.96 (m, 1H, H-5), 4.30 (m, 2H, H-3), 3.71 (s, 3H, NCH₃), 3.57 (s, 3H, NCH₃), 3.04 (m, 1H, H-4), 2.78 (m, 1H, H-4); 13 C NMR (20.4 MHz, DMSO-da); δ 103.1 (C-5), 65.6 (C-3). 57.7, 55.7 (N(CH₃)₂), 34.4 (C-4), 6: m.p. 127-128 °C: ¹H NMR (DMFA-d₇); 6.9.20 (br.s. 1H. OH), 8.00-7.20 (m, 10 H, arom.), 5.82 (d, J=5 Hz, 1H, H-5), 5.36 (m, 3H, H_e-3 and H_A part an AB spin system of two CH₂ benzylic protons), 4.40 (m, 3H, H_a-3 and HB part of an AB spin system of two CH₂ benzylic protons), 2.06 (m, 1H, H_e-4), 1.18 (m, 1H, H_e-4); ¹³C NMR (DMSO-d₆): 6 133.2, 132.7, 130.3, 128.7, 128.6, 128.2, 127.7, 127.5 (8 aromatic carbons), 103.2 (C-5), 72.1, 66.6, 61.9(C-3, 2 CH₂C₆H₅), 34.4 (C-4). 7: m.p. 97-98 $^{\circ}$ C; ¹H NMR (CDCl₃ + DMSO-d₆): δ 8.78 (s, 1H, HCO), 6.90 (br.s., 1H, OH), 6.15 (m, 1H, H-3), 4.58 (m, 2H, H-5), 4.00 (s, 3H, NCH₃), 3.84 (s, 3H, NCH₃), 2.84 (m, 1H, H-4), 2.50 (m, 1H, H-4); 13 C NMR (DMSO-d₆): δ 159.1 (COO⁻, 2 JcF =159.1 Hz), 158.5 (HCO), 117.1 (CF₃, 1 JcF = 298 Hz), 83.3 (C-3), 69.3 (C-5), 56.7 (NCH₃), 53.7 (NCH₃), 30.2 (C-4). 8: oil, ¹H NMR (DMFA-d₇): 88.50 (br.s, 1H, OH), 7.92-7.36 (m, 5H, arom.), 5.86 (m, 1H. H-3), 4.44 (m, 2H, H-5), 3.96 (s, 3H, NCH₃), 3.78 (s, 3H, NCH₃), 2.36 (m, 1H, H-4), 1.92 (m, 1H, H-4).
- 4. Ioffe, B.V.; Zelenin, K.N. Dokl. Akad. Nauk SSSI. 1962, 144, 6, 1303-1306.
- 5. The basification of salt 1 (1 mmol) with 6N potassium hydroxide (5 ml) solution, was followed by extraction with benzene (2 x 10 ml) and evaporation in vacuum resulted in pure aminonitrile.
- Zelenin, K.N.; Ershov, A. Yu.; Beshan, I.P. Khim. Geterocycl. Soedin. 1990., 11, 1559-1562.
- 7. The solution of 1 mmol reagents in 10 ml benzene was boiled for 72 hours, evaporated in vacuum. The product was purified by column chromatography (silica gel, ethyl acetate hexane = 1:2). He NMR (100 MHz, CDCl₃): δ 9.00 (t, 1H), 8.52 (m, 10H), 3.81 (s, 4H), 3.41 (t, 2H), 1.95 (dt., 2H).